
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Efficient VLSI Implementation of a Sequential
Finite Field Multiplier Using Reordered

Normal Basis in Domino Logic
Parham Hosseinzadeh Namin , Crystal Roma, Roberto Muscedere, and Majid Ahmadi , Fellow, IEEE

Abstract— In this paper, a high-speed power-efficient VLSI
implementation of a finite field multiplier in GF(2m) is presented.
The proposed design has a serial-in parallel-out architecture and
performs the multiplication operation using a reordered normal
basis. The basic idea is to implement the main building block
of the multiplier in domino logic to reduce the critical path
delay. Reduction in dynamic power consumption is achieved by
limiting the contention current between the keeper transistor
and the pull-down network at the beginning of the evaluation
phase by employing a new keeper control circuit. The semi-
custom layout of the multiplier was realized in 65-nm CMOS
technology. The post place-and-route simulations showed that the
multiplier can perform multiplication correctly up to a clock rate
of 3.85 GHz and consumes marginally less power than the static
CMOS counterpart (also implemented with custom placement
and route). The size of the multiplier is currently recommended
by the National Institute of Standards and Technology for binary
field multiplication in elliptic curve cryptography. The proposed
design methodology can also be used in the implementation of
similar finite field multipliers possessing regular architectures.

Index Terms— Domino logic, elliptic curve cryptogra-
phy (ECC), finite field arithmetic, reordered normal basis (RNB),
serial-in parallel-out (SIPO) finite field multiplier.

I. INTRODUCTION

EFFICIENT computations of finite field arithmetic are
highly important in cryptographic applications where

field operations are extensively used, namely, elliptic curve
cryptography (ECC) and Elgamal cryptosystem [1]. The binary
extension field GF(2m) is a closed set of 2m elements, meaning
that arithmetic operations over the field elements are conducted
without leaving the set [2]. Each element of a finite field can be
expressed by a bit sequence of length m. A field can be thought
of as a vector space spanned by a vector set of m linearly

Manuscript received November 28, 2017; revised March 20, 2018
and June 6, 2018; accepted June 8, 2018. This work was supported by the
Natural Sciences and Engineering Council of Canada. (Corresponding author:
Parham Hosseinzadeh Namin.)

P. Hosseinzadeh Namin was with the Department of Electrical and Computer
Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada. He is
now with Advanced Macro Devices, Thornhill, ON L3T 7X6, Canada (e-mail:
hosseinp@uwindsor.ca).

C. Roma was with the Department of Electrical and Computer Engineering,
University of Windsor, Windsor, ON N9B 3P4, Canada. She is now with the
Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, ON N2L 3G1, Canada.

R. Muscedere and M. Ahmadi are with the Department of Electrical
and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4,
Canada (e-mail: rmusced@uwindsor.ca; ahmadi@uwindsor.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2851958

independent elements, called a basis. Choosing the basis
by which field elements are represented plays an important
role in the efficient implementation of finite field operations.
A number of bases over finite fields have been proposed in
the literature, among which polynomial basis (PB) and normal
basis (NB) are primarily used in practice [1]. Although the use
of PB is most common in software implementations, NB offers
a virtually cost-free squaring operation performed by a single
cyclic shift over the field element’s coordinates, thus making
it the better choice for hardware implementation. Among the
set of finite field arithmetic operations, the efficient imple-
mentation of field multiplication is of upmost importance,
as field operations of greater complexity (e.g., exponentiation
and division) can be performed by the consecutive use of field
multiplication.

It is proven that an NB exists for every field in GF(2m) [3].
In general, the multiplication operation in NB can be modeled
as a matrix-vector multiplication, where a matrix multipli-
cation is required to be performed for each of the product
coordinates [3]. The hardware complexity of the multiplication
operation is directly affected by the number of nonzero ele-
ments inside the multiplication matrix. This number is referred
to as the complexity of NB and is denoted by CN . For a
given m, CN varies between the two extreme values of 2m +1
and m2 and is minimal in the case of two subclasses of
NB, known as type I and II optimal NBs (ONBs) [3]. Gao
and Vanstone [4] were the first to present the mathematical
formulation for reordered NB (RNB) for the subclass of NB in
which a type-II ONB exists [4]. RNB can effectively simplify
the multiplication operation by defining it as a closed-form
formula rather than a matrix operation.

A fully parallel architecture would be a natural choice
for applications in which speed is of great priority. Addi-
tionally, by cryptographic standards, the use of high-order
fields (m > 160) is recommended to ensure a high level
of security [1]. However, considering the fact that a parallel
architecture has an area complexity of O(m2), a large m will
result in a big, power greedy design not suitable for resource-
constrained applications. Contrastingly, a fully serial (sequen-
tial) multiplier has an area complexity of O(m), resulting in
a significantly smaller structure. Despite their smaller size,
sequential multipliers require m clock cycles to complete a
full multiplication operation as compared to only one cycle in
the case of a fully parallel architecture. Thus, it is desirable
to reduce the multiplication delay of a sequential multiplier to
compensate for this shortcoming.

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5960-3584
https://orcid.org/0000-0001-5781-6754

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I

GATE-LEVEL COMPLEXITY COMPARISON BETWEEN DIFFERENT BIT-SERIAL RNB/TYPE-II ONB MULTIPLIERS OVER F2m

In this paper, we present an optimized VLSI implementation
of a serial-in parallel-out (SIPO) RNB multiplier in GF(2m).
Our design is based on the sequential architecture proposed by
Wu et al. [15]. Originating from an inherent feature of RNB,
this architecture has a highly regular structure. The regularity
of this architecture has been previously exploited to construct
a high-speed custom-layout multiplier by implementing the
main building block of the architecture in domino logic [16].
However, this performance improvement in terms of critical
path delay is obtained at the cost of a significant increase in
power consumption. This is the major drawback characteristic
to domino logic circuits. The main objective of this paper
is to further improve the performance of the multiplier by
employing a custom-designed domino logic circuit that effec-
tively reduces the power dissipation of the domino circuit.
It is shown that the new implementation significantly increases
the maximum operating frequency compared to its equivalent
static CMOS realization, as well as successfully reduces the
power consumption to a comparable level.

The organization of this paper is as follows. Section II
provides a brief review of RNB and multiplication operations
using this basis. A short complexity comparison between
existing RNB/type-II ONB multipliers is given in Section III.
In Section IV, a new domino logic design for the main building
block of the multiplier is presented. VLSI implementation and
performance comparisons are discussed in Section V. Finally,
concluding remarks are given in Section VI.

II. BRIEF REVIEW OF REORDERED NORMAL BASIS AND

MULTIPLICATION OPERATION USING THIS BASIS IN F2m

Let 2m + 1 be a prime number and β be a primitive
(2m + 1)th root of unity in F2m , i.e., β2m+1 = 1. Then,
γ = β + β−1 generates an ONB of type II in F2m , which
can be expressed as I = {γ 2i

, i = 0, 2, . . . , m − 1}. Define a
set of m elements as I2 = {γi = β i + β−i , i = 1, 2, . . . , m}.
It has been proven in [4] that I2 is also a basis in F2m . In fact,
it can be shown that I2 is a permutation of the ONB I in the

sense that it contains the same elements as I but in a different
order. The basis I2 = {γ1, . . . , γm} is referred to as the RNB.

Assume that A and B are two arbitrary elements in
F2m and are represented with respect to the RNB basis
I2 = {γ1, . . . , γm} as

A =
m∑

i=1

aiγi , B =
m∑

i=1

biγi

and the product of the two elements is to be stored in C with
respect to the same basis as C = ∑m

i=1 ciγi , where ai , bi ,
ci ∈ F2. Following [15], the values for the product coordinates,
ci , can be calculated as:

ci =
m∑

j=0

a j [bs(i+ j) + bs(j−i)], i = 1, . . . , m (1)

where function s(i) facilitates the calculations by mapping
the set of integers to the set {0, 1, . . . , 2m + 1} and is defined
in [15] as

s(i) �
{

i mod 2m + 1, 0 ≤ i mod 2m + 1 ≤ m

2m + 1 − i mod 2m + 1, otherwise.

III. REVIEW OF EXISTING RNB AND

TYPE-II ONB MULTIPLIERS

A. Related Work

As mentioned, each element of an RNB also belongs to a
corresponding ONB. In other words, since the multiplicative
order of β is 2n + 1 and for each 0 ≤ i ≤ n − 1, γ 2i = β2i +
β2−i = γ2i , there is an integer k such that i ≡ ±2kmod2n +1,
and thus γi = γ 2k

[4]. As a result, an RNB representation of a
field element can be converted into type-II ONB representation
by performing a simple permutation over the coordinates
and vice versa. Therefore, RNB multipliers and type-II ONB
multipliers can be used interchangeably without imposing
hardware overhead. Consequently, it would be necessary to
include type-II ONB multipliers when considering an RNB
multiplier.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAMIN et al.: EFFICIENT VLSI IMPLEMENTATION OF A SEQUENTIAL FINITE FIELD MULTIPLIER USING RNB IN DOMINO LOGIC 3

Fig. 1. SIPO RNB multiplier composed of xax-modules.

Several different architectures for sequential RNB/type-II
ONB multipliers have been proposed in the literature.
Table I gives a comparison between the hardware complexities
of the multipliers in terms of critical path delay and the number
of logic cells used. To draw a fair comparison, all of the
chosen multipliers listed in the table require m clock cycles
to generate a full set of product coordinates. The first two
rows of the table show the well-known Massey–Omura NB
multiplier [5] and its improved version proposed by Gao and
Sobelman [6]. The next two architectures are presented by
Agnew et al. [7] and Feng [8], respectively. The proceeding
two rows list sequential multipliers with parallel output of
types I and II [9] followed by two XOR efficient digit serial and
AND efficient digit serial architectures proposed by Reyhani-
Masoleh and Hasan [10]. The ninth and tenth rows show two
efficient serial out/parallel out architectures for odd values
of m [11] followed by Azarderakhsh’s high-throughput PISO
architecture [12]. Kwon et al. [13] and Yang et al. [14] also
presented two other architectures for odd values of m. The
last two rows in the table tabulate the SIPO and PISO RNB
multipliers proposed by Wu et al. [15]. Note that some of the
multipliers presented in Table I are Gaussian NB multipliers
of type k = 2, which are essentially equal to type-II ONB
multipliers.

B. Selected Multiplier Architecture in
Reordered Normal Basis

This paper concentrates on the SIPO architecture proposed
in [15] for four reasons.

1) As shown in Table I, this architecture possesses one of
the smallest critical path delays in comparison to similar
architectures.

2) The structure of this multiplier is highly regular, which
makes it well suited for a full/semicustom VLSI imple-
mentation.

3) This architecture forms a basis to construct sev-
eral world-level multipliers, such as those presented
in [17]–[19].

4) The critical path of the architecture is independent of
field size m. As a result, this architecture can be scaled
to any arbitrary size multiplier without causing negative
effects on the multiplication delay.

Fig. 1 shows the architecture of the SIPO multiplier pre-
sented in [15] to realize (1). As can be seen in the figure, this
architecture is highly regular consisting of multiple copies of
a building block referred to as an xax-module. This module,
as shown inside the dashed boxes, consists of two XOR gates,
one AND gate, and three flip-flops. The desired multiplier
can be obtained by cascading the appropriate number of xax-
modules. In the architecture at hand, the shift register at the top
of the figure should be initially loaded with one of the input
coordinates preceding the multiplication operation, whereas
the other input is serially fed into the multiplier, one coefficient
at a time, during the multiplication process. After the top shift
register is fully loaded, a load signal cuts off the external data
stream to the multiplexer, thus forming a circular shift register
required for the multiplication process during the clock cycles
that follow. After m clock cycles, the product coordinates, ci ,
can be read from the output registers.

IV. DESIGN OF THE MULTIPLIER’S MAIN BUILDING

BLOCK IN DOMINO LOGIC

As can be seen in Fig. 1, the xax-module contains the
critical path of the SIPO architecture. This path is made of
the two XOR gates in addition to the AND gate inside the
xax-module. In an attempt to reduce the multiplication delay,
Namin et al. [16] have designed and realized the critical path
of the multiplier in domino logic. Although using domino logic
for implementing the main building block of the multiplier
can effectively increase the maximum operating frequency, this
technique has a deteriorating effect on the power dissipation.
The increase in power consumption stems from a higher
internal switching activity, which is an inherent characteristic
of domino logic circuits. Consequently, the resulting design
would consume much more dynamic power compared to its
static CMOS counterpart.

In order to alleviate the negative effects incurred by
using domino logic-based designs over static CMOS, sev-
eral techniques have been proposed in the past few years,
e.g., high-speed domino [20], XOR-based domino [21],
conditional-keeper domino [22], single-phase domino [23],
and current comparison-based domino [24]. Primarily,
the focus of the existing techniques is on design strategies,
which compensate for leakage current in deep submicrometer
technologies, narrower noise margins, contention delay at the
evaluation phase, and the transistor stacking effect. Therefore,
these techniques would be better suited for high fan-in circuits,
in which the pull-down network (PDN) contains a large
number of parallel paths to the ground, such as high fan-
in multiplexers, comparators, and more general OR-like cells.
Furthermore, the relatively large number of transistors required
to implement these techniques compared to the total number of
transistors used in the design of the small xax-module imposes
significant power and area overheads. Such techniques are not
applicable to the multiplier in discussion.

The implementation presented in [16] uses a conventional
domino logic circuitry, thus increasing the dynamic power
consumption due to the higher switching activities. In this
paper, the power dissipation problem is tackled using custom-
designed domino circuitry, which reduces the contention cur-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. Proposed design for XOR–AND–XOR function in domino logic.

rent drawn at the very beginning of the evaluation phase.
Depending on the value of the input signals, contention may
occur between the pull-up network (PUN) and the PDN of a
domino circuit during the evaluation phase. This contention,
though short in time, forms a conducting path from VDD,
across PUN and PDN, to ground causing high-amplitude cur-
rent spikes. The basic idea is to limit the contention current by
utilizing a new conditional keeper to compensate for the power
overhead caused by the higher switching activity of the circuit.

Fig. 2 shows a schematic of the circuit designed to imple-
ment the XOR–AND–XOR function in domino logic. This
circuit is responsible to realize an XOR operation between two
different coordinates of B , followed by an AND applied to the
result and one of the A coordinates. Finally, this is combined
with another XOR that, when paired with a flip-flop, forms
an accumulation unit. In terms of the variables used in (1),
this circuit realizes logic function ((b1 ⊕ b2) . a) ⊕ c. The
static PUN is merely composed of a single pMOS transistor
charging the dynamic node Q to VDD during the precharge
phase. The PDN, on the other hand, consists of 12 transistors
(N4–N15), which discharge the dynamic node at the presence
of appropriate combinations of the input values. The PDN
is connected to a footer transistor, N16, which reduces the

leakage current due to the stacking effect and opens a path to
the ground during the evaluation phase. Transistors P2 and N2
generate a control signal to an nMOS keeper depending on the
voltage of the dynamic node and the logic state of the clock
signal. Transistors P1 and N1 form the output inverting stage,
providing the required current to drive the output flip-flop.
In the presented schematic, the input signals are referred to
as B1, B2, A, and C. Four inverter gates shown at the bottom
of Fig. 2 (I1–I4) generate the complements of the module’s
input signals. As a naming convention, a “_comp” added to the
end of the signal’s name refers to its complement signal. The
proposed dynamic circuit operates in two phases as follows.

During the precharge phase, pull-up transistor P0 steadily
charges the dynamic node. If the dynamic node is initially in a
low state, node C is quickly charged to VDD by P2, which turns
ON the keeper transistor to speed up the precharging process.
The voltage of the dynamic node rises until it reaches a certain
level, at which time the output switches to a low state, causing
P2 to discharge node C and then turn OFF the keeper transistor.
Therefore, at the end of the precharge phase, the dynamic node
is fully charged and the keeper is held OFF to avoid negative
impacts on delay and power consumption at the beginning of
the next phase.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAMIN et al.: EFFICIENT VLSI IMPLEMENTATION OF A SEQUENTIAL FINITE FIELD MULTIPLIER USING RNB IN DOMINO LOGIC 5

Fig. 3. Layout for the XOR–AND–XOR function in 65-nm technology.

At the beginning of the evaluation phase, the clock
signal switches to a high state, keeping the pull-up transistor
turned OFF. At this moment, two different scenarios could
occur depending on the logic values of the input signals. In the
first scenario, a conducting path is formed from the dynamic
node to the ground, discharging the dynamic node through
the PDN network. In this case, when the dynamic voltage falls
below VDD−Vth,N2, the source and drain junctions of transistor
N3 are reversed and the accumulated charge on node C is fully
discharged through N3. This prevents the keeper transistor
from being turned ON. In the second scenario, the dynamic
node is evaluated to a high state. N2 is turned ON in the case
that the leakage current reduces the voltage of the dynamic
node. The behavior of the circuit shown in Fig. 2 is explained
in more detail in our recent work in [25].

V. CUSTOM-LAYOUT IMPLEMENTATION

OF THE xax-MODULE

After determining the optimal values of the transistor sizes
through extensive schematic-level simulations, the layout of
the schematic shown in Fig. 2 was created in a seven-metal
65-nm CMOS process. A large number of major and minor
modifications were applied to the prototype layout in an
attempt to find the best transistor arrangement to reduce the
required area and to find the best routing path patterns. Post-
layout fine-tuning was also carried out to reduce the negative
effects of parasitic components, which, in turn, resulted in less
delay. The final layout is shown in Fig. 3. The leftmost section
shows four inverters used to generate the complements of the
input signals. The section in the middle is responsible for
implementing the PDN. Finally, the rightmost section contains
the keeper transistor, the keeper control circuit, and the output
inverter. The dimensions of the layout are 1.8 μm × 6.37 μm
covering 11.467 μm2. The center-to-center power rail pitch
was selected, such that the layout would be compatible with

Fig. 4. Test bench for performing corner analysis.

the 65-nm general purpose standard cell library from TSMC,
thus allowing it to share the same size power rails.

The final layout of the xax-module also includes two input
and one output flip-flops. Since the logic function is realized
by the PDN (as opposed to the case in which the function is
realized by pMOS transistors in PUN), the use of negative-
edge triggered flip-flops would be the only available option to
provide enough time for the domino cell to evaluate. As men-
tioned earlier, the static pull-up transistor charges the dynamic
node right after the falling edge of clock signal despite the val-
ues of the inputs, hence, causing an invalid output at the begin-
ning of the precharge phase. As a result, the output flip-flop is
required to have a hold-time equal or preferably less than zero
to be able to sample the evaluated output at the right moment.

A set of Calibre tools was used for debugging and ver-
ifying the physical layout. Physical verification and mask
set corrections were carried out via the Calibre DRC tool.
Circuit verification was performed by making device and
connectivity comparisons between the physical layout and the
schematic through Calibre LVS. Finally, parasitic information
was extracted using Calibre PEX for accurate postlayout
analysis and simulation. Fig. 4 shows the test-bench scheme

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

used to verify the correct functionality of the xax-module
and to evaluate the performance of the module. A set of
random input vectors was first generated using C programming
language. At each clock cycle, the Verilog-A module reads a
new vector from the input file and converts the digital values
to their corresponding analog signals. In order to account for
loading capacitances, fall time and rise time, a small low-pass
filter was defined at the final stage of the signal generator.
To achieve more compatibility in terms of delay, the signal
generator interfaces the xax-module through a set of standard
flip-flops generating more realistic signals. The same set of
input signals is also fed into a Verilog-A module implementing
the same functional behavior of the xax-module. The outputs
of the two modules are compared against each other at each
clock cycle and an error pulse is generated in the case of
mismatch.

In order to measure the amount of deviations in power
consumption and maximum operating frequency over a range
of process, temperature, and voltage variations, various sim-
ulations were conducted. We first performed corner analysis
at three different conditions: room temperature of 27 °C and
two extreme temperatures of −30 °C and +85 °C. All of
the simulations were done with a supply voltage of 1.2 V.
The results are listed in Table II. As expected, the worst case
delay occurs in the slow–slow corner at +85 °C (129 ps),
whereas the best-case delay belongs to the fast–fast corner at
−30 °C (79 ps). The amount of power consumption ranges
from 31.8 μW/GHz for the slow–slow corner at −30 °C to
41 μW/GHz for the fast–fast corner at +85 °C. Table II
presents the results of corner analysis for cases in which
temperature is 27 °C and VDD varies between 1.08 V (−10%)
and 1.32 V (+10%) for each corner. As the simulation results
suggest, the proposed implementation demonstrates acceptable
performances over a wide range of temperatures, voltages, and
process variations.

VI. DESIGN AND IMPLEMENTATION OF THE FULL

MULTIPLIER USING THE xax-MODULE

As shown in Fig. 1, a full multiplier of an arbi-
trary size can be readily constructed by serially connecting
xax-modules together. In the context of cryptography, a proper
choice of field size depends on several factors, including the
features of the chosen representation basis and the level of
security required. It has been shown that a 160-bit ECC can
provide the same level of security as a 1024-bit RSA security
scheme, which provides adequate security for a broad range
of applications [26]. In order to implement the full multiplier,
we selected the field size of 233, as it can be represented
by an RNB and it is large enough to fall in the suitable range
for ECC. Additionally, it is one of the few fields recommended
by the National Institute of Standards and Technology (NIST)
for ECC applications.

The arrangement and interconnections between different
building blocks of the 233-bit multiplier are shown in Fig. 5.
To achieve the most compact design, the chain of the
xax-modules was broken down into an array of 18 rows, each
containing 13 modules. In each row, three buffers were used to

TABLE II

POSTLAYOUT CORNER ANALYSIS SIMULATION RESULTS OF
THE xax-MODULE; DELAY (PS) AND POWER (μW/GHz).

(a) DELAY AND POWER VERSUS TEMPERATURE AT

VDD = 1.20 v. (b) DELAY AND POWER

VERSUS VOLTAGE AT 27 °C

provide enough driving strength for the high fan-out input_a,
clock, and reset signals. These buffers, in turn, were driven
by additional buffers, thus resulting in a buffer chain shown at
the leftmost part of the figure. To further reduce the dynamic
power dissipation caused by the domino circuit, clock-gating
was used as a complimentary technique. At the beginning of
each multiplication operation, the domino circuit is idle, while
the coordinates of one of the inputs are being loaded into
the input shift register. However, the dynamic nodes in the
xax-modules are frequently charged and discharged by PUD
and PDN causing unnecessary power overhead. This can be
avoided by keeping the clock signals entering the domino
circuits separate, such that they may be disabled during the
load process.

After the coordinates are fully loaded into the shift register,
the external input to the first flip-flop should be replaced by the
output of the last flip-flop to form a circular shift register. This
can be done by a multiplexer, which uses an input selector
to choose between the external input and the output of the
last flip-flop. The critical path of a typical multiplexer is
composed of one inverter, one AND gate, and one OR gate.
This multiplexer can potentially become a delay bottleneck

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAMIN et al.: EFFICIENT VLSI IMPLEMENTATION OF A SEQUENTIAL FINITE FIELD MULTIPLIER USING RNB IN DOMINO LOGIC 7

Fig. 5. Block diagram of a full 233-bit RNB multiplier.

if its critical path in CMOS implementation becomes longer
than the delay of an XOR–AND–XOR cell. Adopted from the
implementation in [16], if connected properly, an XOR–AND–
XOR circuit may be used in lieu of a multiplexer. While
ensuring consistency across the design, this idea can prevent
the multiplexer from being a delay bottleneck by realizing it
in domino logic. Assuming that input B1 is grounded, input
A is chosen as the input selector, and finally, C and B2 are
connected to the external input and the output of the last
flip-flop, respectively. When the selector signal is at a low
state, the output would be evaluated as ((’0’ ⊕ f lop_out).
’0’)⊕external_input , which is equal to external_input. When
the selector signal is at a high state and external_input is held
low, the output would equate to ((’0’⊕ f lop_out). ’1’)⊕’0’ =
f lop_out . This special module, which is essentially one half
of an xax-module, is referred to as the Load module and is
located at the beginning of the first row of Fig. 5.

Fig. 6 shows the final layout of the 233-bit multiplier
implemented in a CMOS 65-nm process using a Cadences
Layout Composer. The buffer chains, Load module, and one of
the xax-modules are highlighted in the figure. The dimensions
of the full layout are 171 μm × 71 μm for a total area
of 12 141 μm2, which includes the outer power rings. Without
considering the power rings, the area utilization was measured
to be 10 743 μm2.

VII. SIMULATION RESULTS AND PERFORMANCE

COMPARISON BETWEEN DIFFERENT VLSI
IMPLEMENTATIONS

This section draws a comparison between the characteristics
of the proposed VLSI implementation and those of several
implementations reported in the literature. To perform accurate
simulations, the parasitic information of the full multiplier was
extracted using Calibre PEX. At this phase, 735 532 different
components, including parasitic capacitances and resistances,
were extracted from the physical layout. In the next phase,
the simulations were performed in Cadences Analog Envi-
ronment using the Spectre simulator to measure the power
consumption and the maximum operating frequency of the
circuit. To ensure the correct functionality of the circuit,
a presimulation stage was required, in which the test data
set was generated. To do so, the functional behavior of the
multiplier was also modeled in MATLAB. Then, a large
array of random 233-bit paired vectors were created and fed
into the MATLAB code to generate a set of golden product
coordinates. Input pairs and their corresponding outputs were
stored in two separate files. During the analog simulation,
a Verilog-A module read the input files and fed an input pair
into the multiplier for each multiplication operation. After each
multiplication operation, the output coordinates were sampled

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6. Proposed layout for a 233-bit sequential RNB multiplier designed in domino logic.

and stored in an output file before new data were loaded into
the multiplier. These outputs were later verified by comparing
them against the golden set created by the MATLAB code. The
simulation result showed that the circuit was correctly func-
tional up to a clock rate of 3.84 GHz. The power consumption
of the multiplier was measured to be 13.01 mW/GHz averaged
over 100 consecutive multiplication operations.

As previously emphasized in Section I, the main objective
of this paper was to compare the performance of the proposed
implementation with that of a static CMOS implementation
to demonstrate that the new domino logic circuit can fur-
ther reduce the multiplication delay of the multiplier while
preserving the total power consumption. To achieve a fair
and accurate comparison, we also implemented the layout
of the static CMOS multiplier in the same 65-nm CMOS
process using standard cells from TSMC’s libraries. The
layout of the static design was constructed based on the same
structure shown in Fig. 5. Note that the Load module was
implemented in static CMOS and then was incorporated in the
layout to provide the same functionality as its counterpart in
domino logic. To ensure consistency, the same set of random
inputs was applied to the static multiplier when conducting
the simulations. This realization has a maximum operating
frequency of 2.94 GHz and requires 238 ns to finish a single
multiplication operation. Including the power rings, the size
of the layout is 153 μm × 71 μm equal to an area of
10 863 μm2. The required area is reduced to 9 574 μm2 when
not considering the outer rings.

Table III summarizes the main characteristics of the two
custom-layout implementations. The column entitled “Critical
Path Delay” corresponds to the maximum operating frequency
of the design, whereas “Multiplication Delay” indicates the
amount of time required to perform one multiplication opera-
tion. As can be seen in the table, compared to the static CMOS
design, the new design has a considerably smaller critical path
delay, i.e., 260 versus 340 ps, equal to 31% improvement
in the maximum operating frequency. Also, employing the

proposed domino circuit has successfully decreased the power
dissipation of the domino implementation. In fact, the power
dissipation achieved is even marginally less than that of the
static CMOS design. It is generally expected that a domino
circuit requires a fewer number of transistors compared to
its corresponding static CMOS circuit, as the logic function
is realized in PDN using only nMOS transistors. However,
in the case of the domino multiplier, strict limitations on the
cell’s height, isolated oxide areas, the presence of two n-well
islands, and requirements of the design rules in 65-nm process
regarding the use of multithreshold transistors resulted in a
moderate increase in the area of the xax-module. The full
design shown in Fig. 6 requires about 11% more area than
the static design counterpart.

In recent years, many efforts have been made to design effi-
cient finite field multipliers at the algorithmic level; however,
not many VLSI implementations have been reported in the
open literature. Moreover, the presence of different conditions
and assumptions in each implementation, such as different
field sizes, diverse ranges of semiconductor technologies,
different representation systems, varying levels of parallelism
used, different levels of implementations, and so on, makes it
difficult to draw a fair comparison between the performances
of these various implementations.

Table IV lists the specifications and hardware complexities
of the proposed implementation along with those of published
implementations. The last column of the table shows the levels
of implementation for which the results have been reported.
As can be seen in the table, not all of the implementations
have been performed at the same level. A postsynthesis
implementation is a netlist-level implementation, which is
carried out under more idealistic conditions. At this level of
implementation, the negative effects of parasitic components,
clock tree buffers, high fan-out nets, and routing paths are
not taken into account, leading to more optimistic results.
To get a broader picture of the potential differences between
the results of these two levels of implementation, the results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAMIN et al.: EFFICIENT VLSI IMPLEMENTATION OF A SEQUENTIAL FINITE FIELD MULTIPLIER USING RNB IN DOMINO LOGIC 9

TABLE III

COMPLEXITY COMPARISON BETWEEN VLSI IMPLEMENTATIONS OF DOMINO LOGIC AND STATIC CMOS
DESIGNS FOR A SEQUENTIAL RNB MULTIPLIER IN GF(2233)

TABLE IV

COMPLEXITY COMPARISON OF DIFFERENT VLSI IMPLEMENTATIONS FOR FINITE FIELD MULTIPLIERS OVER GF (2m)

of the proposed implementation at the schematic level are also
presented in the last row of the table. Note that the schematic
level simulation is, in essence, an analog simulation. However,
since our schematic implementation only incorporates standard
cells and transistors, it falls into the same level as synthesis
implementation. It is important to note that compared to the
postlayout implementation, the last row shows about 26%
and 40% decrease in power consumption and multiplication
delay, respectively.

If all the implementations listed in Table IV were sequential
multipliers, multiplication delay would be a convenient mea-
sure of evaluation. However, some of the entries of Table IV
utilize different levels of parallelism in their architectures;
this enables them to complete one multiplication operation in
fewer clock cycles. On the other hand, this has a significant
effect on the area requirement and power dissipation of the
multiplier. For each higher level of parallelism that is used,
there will be a shorter multiplication delay and the multiplier
will become progressively bigger. The product of delay and
area can appropriately reflect both factors simultaneously and
can be used as a good measure of evaluation.

At the synthesis level, most of the multipliers in the list
have a lower multiplication delay than the proposal. However,
they all belong to the class of digit-level multipliers, which
are well reflected in the area requirements of the multipliers.

For example, Wang and Fan’s [32] implementation requires
over 115 times more area and both Azarderakhsh and
Reyhani-Masoleh’s [12] designs are almost 3.5 times bigger
than the proposal. The proposed implementation is the
smallest in the list, requiring 33% less area than the second
smallest implementation in the table. The results presented in
the “Delay × Area” column suggest that the implementation
being proposed has the fourth lowest complexity, after both
Azarderakhsh and Reyhani-Masoleh’s [12] implementations
and Namin et al.’s [35] realization. However, in all the three
cases, the preloading delay associated with the input registers
has been excluded from the multiplication delay, which
would add another m cycles (m ×C P D) to latency. Adopting
the same approach in our calculations would decrease the
multiplication delay by a factor of three. Furthermore,
it should be taken into account that Azarderakhsh and
Reyhani-Masoleh’s [12] multiplier uses a smaller field size
(163 instead of 233 for the proposed), which has a direct
effect on both multiplication delay and area requirement.
At this level of implementation, all of the entries were
realized in 65-nm technology, aside from the first two.

At the layout level, all implementations, excluding our
static and domino designs, were realized in technology nodes
older than 65 nm. Ansari and Wu’s [30] design is the only
implementation with shorter multiplication delay than ours.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Considering the fact that its critical path is the longest among
all of the implementations listed in Table IV (excluding
Agnew), the shorter multiplication delay was achieved by
limiting the multiplication operation to mere five clock cycles
at the cost of significantly greater area requirements. This
is well reflected in the area and delay-area quantities. For
example, the area requirement of this implementation is more
than 100 times larger than the proposal. Showing the smallest
area × delay index, the proposed design compares favorably to
all other multipliers at this level of implementation. Finally,
considering the product of area and delay as a measure of
evaluation, the domino-based implementation outperforms the
static implementation by a difference of about 15%.

Although the information presented in Table III provides a
broad picture of the performance of finite field multipliers,
it is important to note that due to the limited number of
reported implementations, it may not be easy to draw a fair and
accurate comparison yet. As the dimensions of semiconductors
decrease, the negative effect of interconnect and parasitic
capacitances becomes more dominant in contributing to the
capacitive load on chips. Consequently, the gap between
schematic/synthesis-level and postlayout simulations grows
bigger. This makes it more difficult to form an accurate
estimate of the overall performance of a multiplier before
the negative effects of routing paths and parasitic capacitance
are taken into consideration. The limited number of reported
implementations and the presence of different conditions and
assumptions in each case suggest that more attention should be
devoted to layout-level implementations of finite field multipli-
ers to enable more comprehensive and accurate comparisons.

VIII. CONCLUSION

A new VLSI implementation of a 233-bit SIPO finite field
multiplier was presented. The field size of 233 is currently
recommended by the NIST for embedded security applications
using ECC. The proposed design is highly regular, possessing
a repeating pattern of a single building block implemented
in domino logic, which can be readily scaled to any arbitrary
size multiplier by cascading the appropriate number of blocks.
In an attempt to alleviate the high-power dissipation of the
domino circuit stemming from higher internal switching activ-
ities, the original design of this building block was modified
to reduce the contention current drawn at the very beginning
of the evaluation phase. The post place-and-route simulations
showed the correct functionality of the design up to a clock
range of 3.85 GHz, achieving a much higher operating speed
while consuming marginally less power compared to the static
CMOS counterpart. The same design methodology can be
utilized to improve the operating speed of other similar regular
architectures without compromising power consumption.

REFERENCES

[1] IEEE Standard Specifications for Public-Key Cryptography,
IEEE Standard 1363-2000, Aug. 2000, pp. 1–228.

[2] R. Lidl and H. Niederreiter, Introduction to Finite Fields and
Their Applications, 2nd ed. New York, NY, USA: Cambridge, U.K.:
Cambridge Univ. Press, 1997.

[3] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson,
“Optimal normal bases in GF(pn),” Discrete Appl. Math., vol. 22, no. 2,
pp. 149–161, Feb. 1989.

[4] S. Gao and S. A. Vanstone, “On orders of optimal normal basis
generators,” Math. Comput., vol. 64, no. 211, pp. 1227–1233, 1995.

[5] J. K. Omura and J. L. Massey, “Computational method and apparatus
for finite field arithmetic,” U.S. Patent 4 587 627, May 6, 1986.

[6] L. Gao and G. E. Sobelman, “Improved VLSI designs for multiplication
and inversion in G F(2m) over normal bases,” in Proc. 13th Annu. IEEE
Int. ASIC/SOC Conf., Sep. 2000, pp. 97–101.

[7] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, “An
implementation for a fast public-key cryptosystem,” J. Cryptol., vol. 3,
no. 2, pp. 63–79, Jan. 1991.

[8] G.-L. Feng, “A VLSI architecture for fast inversion in G F(2m),” IEEE
Trans. Comput., vol. 38, no. 10, pp. 1383–1386, Oct. 1989.

[9] A. Reyhani-Masoleh and M. A. Hasan, “Low complexity word-level
sequential normal basis multipliers,” IEEE Trans. Comput., vol. 54,
no. 2, pp. 98–110, Feb. 2005.

[10] A. Reyhani-Masoleh and M. A. Hasan, “Efficient digit-serial normal
basis multipliers over G F(2m),” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), vol. 5, May 2002, pp. V-781–V-784.

[11] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field
multiplication using Gaussian normal bases,” IEEE Trans. Comput.,
vol. 55, no. 1, pp. 34–47, Jan. 2006.

[12] R. Azarderakhsh and A. Reyhani-Masoleh, “Low-complexity multiplier
architectures for single and hybrid-double multiplications in Gaussian
normal bases,” IEEE Trans. Comput., vol. 62, no. 4, pp. 744–757,
Apr. 2013.

[13] S. Kwon, K. Gaj, C. H. Kim, and C. P. Hong, “Efficient linear array
for multiplication in G F(2m) using a normal basis for elliptic curve
cryptography,” in Cryptographic Hardware and Embedded Systems,
M. Joye and J.-J. Quisquater, Eds. Berlin, Germany: Springer-Verlag,
2004, pp. 76–91.

[14] D. J. Yang, C. H. Kim, Y. Park, Y. Kim, and J. Lim, “Modi-
fied sequential normal basis multipliers for type II optimal normal
bases,” in Computational Science and Its Applications. Berlin, Germany:
Springer-Verlag, 2005, pp. 647–656.

[15] H. Wu, M. A. Hasan, I. F. Blake, and S. Gao, “Finite field multiplier
using redundant representation,” IEEE Trans. Comput., vol. 51, no. 11,
pp. 1306–1316, Nov. 2002.

[16] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi,
“High-speed hardware implementation of a serial-in parallel-out finite
field multiplier using reordered normal basis,” IET Circuits, Devices
Syst., vol. 4, no. 2, pp. 168–179, Mar. 2010.

[17] A. H. Namin, H. Wu, and M. Ahmadi, “Comb architectures for finite
field multiplication in F

m
2 ,” IEEE Trans. Comput., vol. 56, no. 7,

pp. 909–916, Jul. 2007.
[18] A. H. Namin, H. Wu, and M. Ahmadi, “A high-speed word level finite

field multiplier in F
m
2 using redundant representation,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1546–1550,
Oct. 2009.

[19] A. H. Namin, H. Wu, and M. Ahmadi, “High-speed architectures for
multiplication using reordered normal basis,” IEEE Trans. Comput.,
vol. 61, no. 2, pp. 164–172, Feb. 2012.

[20] M. H. Anis, M. W. Allam, and M. I. Elmasry, “Energy-efficient
noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS
technologies,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10,
no. 2, pp. 71–78, Apr. 2002.

[21] C.-H. Hua, W. Hwang, and C.-K. Chen, “Noise-tolerant XOR-based
conditional keeper for high fan-in dynamic circuits,” in Proc. IEEE Int.
Symp. Circuits Syst., vol. 1, May 2005, pp. 444–447.

[22] A. Alvandpour, R. K. Krishnamurthy, K. Soumyanath, and S. Y. Borkar,
“A sub-130-nm conditional keeper technique,” IEEE J. Solid-State
Circuits, vol. 37, no. 5, pp. 633–638, May 2002.

[23] C. J. Akl and M. A. Bayoumi, “Single-phase SP-domino: A limited-
switching dynamic circuit technique for low-power wide fan-in logic
gates,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 2,
pp. 141–145, Feb. 2008.

[24] A. Peiravi and M. Asyaei, “Robust low leakage controlled keeper by
current-comparison domino for wide fan-in gates,” Integr., VLSI J.,
vol. 45, no. 1, pp. 22–32, 2012.

[25] P. H. Namin, R. Muscedere, and M. Ahmadi, “Low power design of a
word-level finite field multiplier using reordered normal basis,” in Proc.
49th Asilomar Conf. Signals, Syst. Comput., Nov. 2015, pp. 437–440.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAMIN et al.: EFFICIENT VLSI IMPLEMENTATION OF A SEQUENTIAL FINITE FIELD MULTIPLIER USING RNB IN DOMINO LOGIC 11

[26] An Elliptic Curve Cryptography (ECC) Primer: Why ECC is
the Next Generation of Public Key Cryptography. The Certicom
‘Catch the Curve’ White Paper Series, Jun. 2004. [Online]. Avail-
able: https://www.certicom.com/content/dam/certicom/images/pdfs/WP-
ECCprimer.pdf

[27] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An implementation of
elliptic curve cryptosystems over F2155 ,” IEEE J. Sel. Areas Commun.,
vol. 11, no. 5, pp. 804–813, Jun. 1993.

[28] W. Tang, H. Wu, and M. Ahmadi, “VLSI implementation of bit-parallel
word-serial multiplier in G F(2m),” in Proc. 3rd Int. IEEE-NEWCAS
Conf., Jun. 2005, pp. 399–402.

[29] A. Satoh and K. Takano, “A scalable dual-field elliptic curve crypto-
graphic processor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460,
Apr. 2003.

[30] B. Ansari and H. Wu, “Efficient finite field processor for G F(2163) and
its VLSI implementation,” in Proc. 4th Int. Conf. Inf. Technol. (ITNG),
Apr. 2007, pp. 1021–1026.

[31] A. Hariri and A. Reyhani-Masoleh, “Digit-level semi-systolic and sys-
tolic structures for the shifted polynomial basis multiplication over
binary extension fields,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 11, pp. 2125–2129, Nov. 2011.

[32] Z. Wang and S. Fan, “Efficient Montgomery-based semi-systolic mul-
tiplier for even-type GNB of G F(2m),” IEEE Trans. Comput., vol. 61,
no. 3, pp. 415–419, Mar. 2012.

[33] K. Leboeuf, A. H. Namin, H. Wu, R. Muscedere, and M. Ahmadi, “Effi-
cient VLSI implementation of a finite field multiplier using reordered
normal basis,” in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst.,
Aug. 2010, pp. 1218–1221.

[34] B. Rashidi, S. M. Sayedi, and R. R. Farashahi, “An efficient and high-
speed VLSI implementation of optimal normal basis multiplication over
G F(2m),” Integr., VLSI J., vol. 55, pp. 138–154, Sep. 2016.

[35] S. H. Namin, H. Wu, and M. Ahmadi, “Low-power design for a digit-
serial polynomial basis finite field multiplier using factoring technique,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2,
pp. 441–449, Feb. 2017.

Parham Hosseinzadeh Namin was born in 1983 in
Tehran, Iran. He received the B.Sc. degree in electri-
cal engineering from Islamic Azad University, Karaj
Branch, Karaj, Iran, in 2006, the M.Sc. degree in
telecommunication engineering from the University
of Tabriz, Tabriz, Iran, in 2009, and the Ph.D.
degree in electrical engineering from the University
of Windsor, Windsor, ON, Canada, in 2016.

He is currently a Senior Design Engineer with
the SoC RTG Team, Advanced Macro Devices. His
current research interests include digital and analog

integrated circuits, architectures in finite fields, hardware implementation of
cryptosystems, and hardware trojan detection/prevention techniques in VLSI.

Crystal Roma was born in Windsor, ON, Canada,
in 1995. She received the B.A.Sc. degree in electrical
engineering with a minor in mathematics from the
University of Windsor, Windsor, in 2017. She is
currently working toward the M.A.Sc. degree at the
Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada, with
a specialization in computer hardware.

Her current research interests include com-
puter arithmetic and hardware realizations of
cryptosystems.

Roberto Muscedere was born in Windsor, ON,
Canada, in 1973. He received the B.A.Sc., M.A.Sc.,
and Ph.D. degrees in electrical engineering from
the University of Windsor, Windsor, in 1996, 1999,
and 2003, respectively.

During his studies, he also managed the micro-
electronics computing environment at the Research
Center for Integrated Microsystems (formally VLSI
Research Group), University of Windsor. He is cur-
rently an Associate Professor with the Electrical
and Computer Engineering Department, University

of Windsor. His current research interests include the implementation of high-
performance and low-power VLSI circuits, full and semicustom VLSI design,
computer arithmetic, HDL synthesis, and digital signal processing.

Majid Ahmadi (F’02) received the B.Sc. degree
in electrical engineering from Sharif University,
Tehran, Iran, in 1971, and the Ph.D. degree in
electrical engineering from the Imperial College of
Science, Technology and Medicine, London, U.K.,
in 1977.

He has been with the Department of Electrical
and Computer Engineering, University of Windsor,
Windsor, ON, Canada, since 1980, where he is
currently a Distinguished University Professor and
the Associate Dean of Engineering for Research

and Graduate Studies. He has coauthored Digital Filtering in 1-D and
2-Dimensions; Design and Applications (New York: Plennum, 1989).
His current research interests include digital signal processing, machine
vision, pattern recognition, neural network architectures, applications, VLSI
implementation, computer arithmetic, and MEMS. He has published over
500 articles in these areas.

Dr. Ahmadi is a fellow of the IET, U.K. He was a recipient of the
Honorable Mention Award from the Editorial Board of the Journal of Pattern
Recognition in 1992 and the Distinctive Contributed Paper Award from
the Multiple-Valued Logic Conference Technical Committee and the IEEE
Computer Society in 2000, the Best Paper Award from the 2011 IEEE
International Electro/Information Technology Conference, the Distinguished
University Professorship in 2003, the Faculty of Engineering Deans Special
Recognition Award in 2007, and the University of Windsor Award for
Excellence in Scholarship, Research and Creative Activity in 2008. He was the
IEEE-CAS Representative on the Neural Network Council and the Chair of the
IEEE Circuits and Systems Neural Systems Applications Technical Committee
in 2000. He has served on the Editorial Board of the Journal of Circuits,
Systems and Computers as an Associate Editor and a Regional Editor from
1992 to 2012. He has been an Associate Editor for the Journal of Pattern
Recognition since 1992.

